Atomic Operations across GPU generations

Juan Gómez-Luna
University of Córdoba (Spain)
About me

• Juan Gómez-Luna
• Telecommunications Engineering (University of Sevilla, 2001)
• Since 2005 Lecturer at the University of Córdoba
• PhD Thesis (University of Córdoba, 2012)
 – Programming Issues for Video Analysis on Graphics Processing Units
• Research collaborations:
 – Technical University Munich (Germany)
 – Technical University Eindhoven (The Netherlands)
 – University of Illinois at Urbana-Champaign (USA)
 – University of Málaga (Spain)
 – Barcelona Supercomputing Center (Spain)
• PI of University of Córdoba GPU Education Center (supported by NVIDIA)
Outline

• Uses of atomic operations

• Atomic operations on shared memory
 – Evolution across GPU generations
 – Case studies
 • Stream compaction
 • Histogramming
 • Reduction

• Atomic operations on global memory
 – Evolution across GPU generations
 – Case studies
 • Scatter vs. gather
 • Adjacent thread block synchronization
Uses of atomic operations

• Collaboration
 – Atomics on an array that will be the output of the kernel
 – Example
 • Histogramming

• Synchronization
 – Atomics on memory locations that are used for synchronization or coordination
 – Example
 • Locks, flags...
Uses of atomic operations

• CUDA provides atomic functions on shared memory and global memory

• Arithmetic functions
 – Add, sub, max, min, exch, inc, dec, CAS

 int atomicAdd(int*, int);

• Bitwise functions
 – And, or, xor

• Integer, uint, ull, and float
Outline

• Uses of atomic operations

• Atomic operations on shared memory
 – Evolution across GPU generations
 – Case studies
 • Stream compaction
 • Histogramming
 • Reduction

• Atomic operations on global memory
 – Evolution across GPU generations
 – Case studies
 • Scatter vs. gather
 • Adjacent thread block synchronization
Atomic operations on shared memory

• Code
 - CUDA: int atomicAdd(int*, int);
 - PTX: atom.shared.add.u32 %r25, [%rd14], 1;
 - SASS:

Tesla, Fermi, Kepler	Maxwell
/*00a0*/ LDSLK P0, R9, [R8];	/*01f8*/ ATOMS.ADD RZ, [R7], R11;
/*00a8*/ @P0 IADD R10, R9, R7;	
/*00b0*/ @P0 STSCUL P1, [R8], R10;	
/*00b8*/ @P1 BRA 0xa0;	

 - Lock/Update/Unlock vs. Native atomic operations

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Atomic operations on shared memory

- Atomic conflict degree
 - Intra-warp conflict degree from 1 to 32

No atomic conflict = concurrent votes

Atomic conflict = serialized votes
Atomic operations on shared memory

- Microbenchmarking on Tesla, Fermi and Kepler
 - Position conflicts (GTX 580 – Fermi)
Atomic operations on shared memory

- **Microbenchmarking on Tesla, Fermi and Kepler**
 - Position conflicts (K20 – Kepler)
Atomic operations on shared memory

- Microbenchmarking on Maxwell
 - Position conflicts (GTX 980 – Maxwell)
Case studies: Filtering

- Filtering / Stream compaction

Stream compaction

<table>
<thead>
<tr>
<th>Input</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predicate: Element > 0
Case studies: Filtering

- Filtering Algorithms
 - Global memory atomics
 - Shared memory atomics

```c
__global__ void filter_k(int *dst, int *nres, const int* src, int n, int value) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if(i < n && src[i] != value) {
        int index = atomicAdd(nres, 1);
        dst[index] = src[i];
    }
}
```

```c
__global__ void filter_shared_k(int *dst, int *nres, const int* src, int n, int value) {
    __shared__ int l_n;
    int i = blockIdx.x * (NPER_THREAD * BS) + threadIdx.x;

    for (int iter = 0; iter < NPER_THREAD; iter++) {
        // zero the counter
        if (threadIdx.x == 0)
            l_n = 0;
        __syncthreads();

        // get the value, evaluate the predicate, and
        // increment the counter if needed
        int d, pos;
        if(i < n) {
            d = src[i];
            if(d != value)
                pos = atomicAdd(&l_n, 1);
        }
        __syncthreads();

        // leader increments the global counter
        if(threadIdx.x == 0)
            l_n = atomicAdd(nres, l_n);
        __syncthreads();

        // threads with true predicates write their elements
        if(i < n && d != value) {
            pos += l_n; // increment local pos by global counter
            dst[pos] = d;
        }
        __syncthreads();
        i += BS;
    }
}
```

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case studies: Filtering

- Filtering / Stream compaction: Shared memory atomics
Case studies: Filtering

- Filtering / Stream compaction

Find more: CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics
Case studies: Histogramming

- Privatization for histogram generation
Case studies: Histogramming

- Privatization
 - 256-bin histogram calculation for 100 real images
 • Shared memory implementation uses 1 sub-histogram per block
 • Global atomics were greatly improved in Kepler
• Histogram calculation

For (each pixel \(i\) in image \(I\)){
 Pixel = \(I[i]\) // Read pixel
 Pixel' = Computation(Pixel) // Optional computation
 Histogram[Pixel']++ // Vote in histogram bin
}
Case studies: Histogramming

- Histogram calculation
- Natural images: spatial correlation
Case studies: Histogramming

- Histogram calculation
- Privatization + Replication + Padding

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case studies: Histogramming

- Histogram calculation: 100 real images
 - Privatization + Replication + Padding

![Diagram showing execution time vs replication factor and histogram size for different GPUs (GTX 580, K40c, GTX 980).]
Case studies: Histogramming

- Privatization
 - 256-bin histogram calculation for 100 real images
 - Shared memory implementation uses 1 sub-histogram per block
 - Global atomics were greatly improved in Kepler
Case studies: Reduction

- Reduction
 - Tree-based algorithm is recommended (avoid scatter style)
Case studies: Reduction

- Reduction
 - 7 versions in CUDA samples: Tree-based reduction in shared memory
 - Version 0: No whole warps active
 - Version 1: Contiguous threads, but many bank conflicts
 - Version 2: No bank conflicts
 - Version 3: First level of reduction when reading from global memory
 - Version 4: Warp shuffle or unrolling of final warp
 - Version 5: Warp shuffle or complete unrolling
 - Version 6: Multiple elements per thread sequentially
Case studies: Reduction

- Reduction

![Graphs showing throughput (GB/s) for different versions of Fermi GTX 580, Kepler K20, and Maxwell GTX 980.](image-url)
Case studies: Reduction

• Reduction
Outline

• Uses of atomic operations

• Atomic operations on shared memory
 – Evolution across GPU generations
 – Case studies
 • Stream compaction
 • Histogramming
 • Reduction

• Atomic operations on global memory
 – Evolution across GPU generations
 – Case studies
 • Scatter vs. gather
 • Adjacent thread block synchronization
Atomic operations on global memory

- **Tesla:**
 - Executed on DRAM
- **Fermi:**
 - Executed on L2
 - Atomic units near L2
- **Kepler and Maxwell:**
 - Atomic units near L2 now have kind of local cache
Case study: Scatter vs. Gather

- Scatter vs. Gather
Case study: Scatter vs. gather

- **Scatter vs. Gather**

```c
__global__ void s2g_gpu_scatter_kernel(unsigned int* in, unsigned int* out,
                                         unsigned int num_in, unsigned int num_out) {

    unsigned int inIdx = blockIdx.x*blockDim.x + threadIdx.x;
    if(inIdx < num_in) {
        unsigned int intermediate = outInvariant(in[inIdx]);
        for(unsigned int outIdx = 0; outIdx < num_out; ++outIdx) {
            atomicAdd(&(out[outIdx]), outDependent(intermediate, inIdx, outIdx));
        }
    }
}

__global__ void s2g_gpu_gather_kernel(unsigned int* in, unsigned int* out,
                                       unsigned int num_in, unsigned int num_out) {

    unsigned int outIdx = blockIdx.x*blockDim.x + threadIdx.x;
    if(outIdx < num_out) {
        unsigned int out_reg = 0;
        for(unsigned int inIdx = 0; inIdx < num_in; ++inIdx) {
            unsigned int intermediate = outInvariant(in[inIdx]);
            out_reg += outDependent(intermediate, inIdx, outIdx);
        }
        out[outIdx] += out_reg;
    }
}
```
Case study: Scatter vs. gather

- Scatter vs. Gather

![Graph showing execution time for different scenarios](image-url)
Case study: Scatter vs. gather

- Scatter vs. Gather

Fermi: ROPs in L2 cache

Execution time (ms)

Scatter wo. Conflicts Scatter w. Conflicts Gather

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case study: Scatter vs. gather

- Scatter vs. Gather

Kepler: Buffer in ROPs

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case study: Adjacent block synchronization

- GPU programming with CUDA (or OpenCL) might not completely exploit inherent parallelism in some algorithms
 - In-place operations
 - Possible dependence between consecutive thread blocks
 - Bulk synchronous parallel programming
 - Thread block synchronization requires kernel termination and relaunch
Case study: Adjacent block synchronization

- **In-place matrix padding**
 - Limited GPU memory makes it desirable

![Matrix Diagram](image_url)
Case study: Adjacent block synchronization

- In-place matrix padding
 - Temporary storage into on-chip memory
 - Bulk synchronous programming
 - Global synchronization = kernel termination

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case study: Adjacent block synchronization

- Motivation: In-place matrix padding
 - 5000x4900 -> 5000x5000
 - Almost 100 rows moved in first iteration
 - 181 iterations with some parallelism
 - Last 99 iterations moved sequentially
 - Effective throughput only less than 20% peak bw.
Case study: Adjacent block synchronization

- Regular Data Sliding
 - Dynamic thread block id allocation
 - Avoids deadlocks
 - Loading stage
 - Coarsening factor
 - Adjacent thread block synchronization
 - Avoids kernel termination and relaunch
 - Storing stage
Case study: Adjacent block synchronization

• Timing comparison of the two approaches

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case study: Adjacent block synchronization

- Regular Data Sliding
 - Adjacent block synchronization (Yan et al., 2013)
 - Leader thread waits for previous block flag set
 - Avoids kernel termination and relaunch

```c
__syncthreads();
if (tid == 0){
    // Wait
    while(atomicOr(&flags[bid_ - 1], 0) == 0){;}
    // Set flag
    atomicOr(&flags[bid_], 1);
}
__syncthreads();
```
Case study: Adjacent block synchronization

- Regular Data Sliding
 - Dynamic block id allocation
 - Avoids deadlocks

```c
__shared__ int bid_;  
if (tid == 0)  
    bid_ = atomicAdd(&S, 1);  
__syncthreads;
```
Case study: Adjacent block synchronization

On-chip memory (registers and shared memory)

Global memory

4 concurrent blocks (size = 2 threads)

Juan Gómez Luna
University of Illinois at Urbana-Champaign. ECE408. October 22, 2015
Case study: Adjacent block synchronization

- Regular Data Sliding: Padding and Unpadding
 - Baseline = bulk synchronous implementation (Motivation)
 - Up to 9.11x (Maxwell) and up to 73.25x (Hawaii)
Case study: Adjacent block synchronization

• Irregular Data Sliding
 – Dynamic block id allocation
 – Loading stage
 • Local counter
 – Reduction
 – Adjacent block synchronization
 – Storing stage
 • Binary prefix-sum within the thread block
Case study: Adjacent block synchronization

• Irregular Data Sliding
 – Adjacent block synchronization
 • count (shared memory variable) contains reduction result
 • flag+count is prefix sum of blocks’ reductions
 • count = flag makes it visible to all threads in block

```c
__syncthreads();
if (tid == 0){
  // Wait
  while(atomicOr(&flags[bid_ - 1], 0) == 0){;}
  // Set flag
  int flag = flags[bid_ - 1];
  atomicAdd(&flags[bid_], flag + count);
  count = flag;
}__syncthreads();
```
Case study: Adjacent block synchronization

- Irregular Data Sliding: Select

Input: 2 1 3 0 0 1 3 4 0 0 2 1

Predicate: True if it is even

Output: 1 3 1 3 1

Up to 3.05x Thrust on Maxwell
2.80x on Kepler
1.78x on Fermi
Case study: Adjacent block synchronization

• Irregular Data Sliding
 – Stream compaction
 • Our Ip stable implementation is 68% of the fastest Oop unstable kernel

 – Unique
 • Up to 3.24x Thrust on Maxwell
 • 2.73x on Kepler
 • 1.66x on Fermi

 – Partition
 • Up to 2.84x Thrust on Maxwell
 • 2.88x on Kepler
 • 1.64x on Fermi
Summary

• Significant hardware improvements for atomic operations
 – Shared memory: Native integer atomics
 – Global memory: L2 + Buffer in ROPs

• They can free programmers from applying software optimization
 – Histogramming

• They may allow a more natural way of coding, saving many lines of code
 – Reduction

• They may allow using new, faster algorithms
 – Filtering
 – Adjacent synchronization
Atomic Operations across GPU generations

Juan Gómez-Luna
University of Córdoba (Spain)
el1goluj@uco.es gomezlun@illinois.edu